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Abstract

Temperate lakes are undergoing climate-driven alterations in their thermal regimes, changing their ecology.
Previous efforts to understand temperature changes have overlooked multi-dimensional temperature dynamics,
missing complex shifts at high spatiotemporal resolutions across landscapes. Here, we use simulated daily water
temperature profiles from > 11,000 temperate lakes throughout the Midwestern United States to (1) quantify
multivariate, landscape-scale patterns in contemporary thermal regimes and (2) contextualize forecasted shifts
and identify novel regimes that may emerge with climatic change. Hierarchical clustering and principal compo-
nent analyses identified six lake clusters with distinct thermal regimes driven by differences in annual warming
rates and spring—summer dynamics, with secondary influences from extreme heat events and seasonal variabil-
ity. Annual temperature variations were influenced by lake-specific physical characteristics, emphasizing distinct
thermal profiles and seasonal variability patterns. Projected climate-driven alterations in thermal regimes
suggest a homogenization toward warmer and more variable conditions, with the majority of lakes characterized
by higher temperatures and increased variability. Few lakes (n = 310), particularly in the southern and south-
eastern Midwest, may experience novel, non-analog conditions by the late 21°' century, while others will
undergo shifts between clusters but remain within analogous regime frameworks. Projected changes in lake
thermal regimes highlight concerns about ecological impacts on aquatic species and habitats, especially as
extreme and variable growing season temperatures intensify and periods of stratification become prolonged.
Furthermore, we identify thermal regimes that are likely to dominate the region by the late 21°* century while
identifying those likely to be lost. The ecological consequences of such changes remain unknown.

Lake water temperatures are pivotal in driving biogeochemi-
cal processes (Couture et al. 2015; Farrell et al. 2024) and shap-
ing the biology and ecology of aquatic organisms, populations,
and communities (Magnuson et al. 1979; Tonn 1990; Edlund
et al. 2017). These temperature-driven processes influence habi-
tat conditions, particularly for poikilothermic freshwater fish,
whose distributions are often in quasi-equilibrium with thermal
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conditions due to physiological constraints that define species’
boundaries (e.g., Heino et al. 2009; Comte et al. 2013). While
air temperature plays a significant role in influencing lake water
temperatures, the two are not always directly coupled
(e.g., Armitage 2023; Tong et al. 2023), limiting the reliability
of air temperature as a proxy for understanding lake thermal
dynamics. Because lake temperatures are infrequently measured
at the resolution and scale necessary to quantify long-term
change, efforts to quantify past and future changes in lake tem-
peratures frequently rely on lake temperatures simulated from
either process-based, statistical, or hybrid models (e.g., Woolway
et al. 2021a, 2021b; Willard et al. 2022; Corson-Dosch
et al. 2023).

Lake water temperatures fluctuate due to surficial heat
fluxes, precipitation, groundwater discharge, geothermal
heat fluxes, and anthropogenic impacts (e.g., Schmid and
Read 2022; Piccolroaz et al. 2023). Lake size and morphology
(Kraemer et al. 2015; Toffolon et al. 2014; Calamita et al. 2021),
littoral canopy cover (e.g., Schiesari 2006), bathymetry
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(Winslow et al. 2015), and water clarity (Heiskanen et al. 2015;
Rose et al. 2016) influence thermal mixing and stratification,
creating lake temperature variability within and across land-
scapes (Soranno et al. 1999; Edlund et al. 2017; Richardson
et al. 2017) and seasons (e.g., Winslow et al. 2017). Climate
change is expected to elevate average water temperatures, inten-
sify summer extremes, increase diurnal variability, lengthen
stratification periods, and reduce winter ice coverage
(e.g., Richardson et al. 2017; Martinsen et al. 2019; Woolway
et al. 2021a; Jane et al. 2023; Piccolroaz et al. 2023), though
individual lake responses to climate change vary due to lake
characteristics (e.g., area, depth, clarity; Toffolon et al. 2014;
Kraemer et al. 2015; Rose et al. 2016). Surface temperatures,
stratification, and/or degree days are typically the focus of
assessments of climate change impacts on lakes (Schupp 1992;
Magee and Wu 2017; Winslow et al. 2017), but the complexity
of lake thermal dynamics is not always encompassed by annual
summaries (e.g., Martinsen et al. 2019), highlighting the need
for a more comprehensive approach to evaluating spatiotempo-
ral lake temperature patterns and to predict responses to climate
change.

A structured approach to organizing data across various
spatial and temporal scales is essential to understanding how
lakes and their ecosystems respond to climate change. Exam-
ining thermal regimes across multiple dimensions—defining
seasonal and annual cycles of water temperatures for specific
regions—provides an effective means of characterizing these
responses (Caissie 2006; Isaak et al. 2018). Such frameworks
categorize environmental variability in terms of magnitude,
frequency, timing, rate of change, and duration, quantifying
and comparing changes across systems (Caissie 2006). At local
scales, this approach can help identify lakes with similar
seasonal and annual temperature cycles, providing a baseline
for examining lake responses to changing climates (Maheu
et al. 2016). At broader scales, it complements traditional
large-scale classifications (e.g., by ecoregion; Maberly et al. 2020)
and imposes finer-resolute insights into regional variability in
water temperature. Furthermore, novel, non-analog thermal pat-
terns in lakes are likely to emerge as climate change progresses
(e.g., Ordonez and Williams 2013). A multi-dimensional
examination of thermal regimes can serve as a robust tool for
detecting unprecedented shifts in lake thermal regimes,
predicting ecological impacts on aquatic biota, and assessing
spatiotemporal variability in lake temperatures, ultimately
improving our understanding of ecological responses to a rap-
idly changing climate.

Here, we present a broad-scale assessment of temperate lake
annual thermal regimes. We define thermal regimes primarily
based on the seasonal and annual dynamics of lake surface
water temperatures and stratification patterns and related ther-
mal metrics. We focus on the thousands of temperate lakes in
the lake-rich upper Midwest, USA, where densities range
between 0.358 and 0.826 lakes per km? (McDonald
et al. 2012). Midwestern lakes are vulnerable to climate-driven
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thermal shifts (e.g., Hansen et al. 2017; Custer et al. 2024),
which may lead to increased productivity and algal blooms
(Monteith et al. 2007; Heathcote et al. 2015), reduced dis-
solved oxygen (Bukaveckas et al. 2024), and shifts in the
aquatic community toward warm-water species dominance
(Stefan et al. 2001; Graham and Harrod 2009; Hansen
et al. 2017, 2022). We employed a comprehensive approach to
characterize current thermal regimes and help anticipate their
responses to ongoing climate change. Using simulated daily,
depth-specific water temperatures simulated for current
(1980-2021) and future (2040-2059, 2080-2099) periods for
11,412 Midwestern lakes (Corson-Dosch et al. 2023), we iden-
tify lake clusters accounting for annual, seasonal, and event-
specific temperature variability across and within lakes and
track projected changes associated with climate change. Nota-
bly, we anticipate the emergence of novel, non-analogous
thermal regimes by the end of the 21 century, underscoring
the scale and shape of change facing these ecosystems. Our
findings provide critical insights into the multifaceted nature
of lake thermal regimes across a vast geographic region and
offer a powerful framework for predicting ecological responses
under future warming scenarios. Furthermore, we posit that
our results can help in informing more precise, targeted con-
servation strategies for the diverse and vulnerable aquatic
communities inhabiting Midwestern lakes.

Methods

Spatial and temporal domain

Supporting Information Fig. S1 provides a conceptual over-
view of our analytical framework for characterizing lake ther-
mal regimes and projecting future changes to regimes under
climate scenarios. Our approach integrates multiple multivari-
ate statistical methods to identify patterns in contemporary
thermal regimes and classify future conditions as either
shifting between established regimes or developing novel,
non-analogous conditions outside historical ranges.

We evaluated thermal regimes across 11,412 temperate lakes
in the upper Midwest, including lakes from North Dakota,
South Dakota, Minnesota, lowa, Wisconsin, Illinois, Michigan,
and Indiana (Supporting Information Figs. S2, S3). We used
simulated daily water temperatures (°C) for lakes within these
states from Corson-Dosch et al. (2023), applying the General
Lake Model (GLM3.0; Hipsey et al. 2019), as error rates were
deemed minimal (RMSE =2.19; Supporting Information
Fig. S4). The GLM is a process-based, one-dimensional model of
lake temperatures driven by either daily or hourly meteorologi-
cal data and parameterized with lake-specific characteristics to
predict year-round, mean daily temperatures at various depths
from the lake bottom. Model outputs were resampled using
interpolation to generate averaged daily temperature for every
day of the year, at 0.5 m depth intervals for each lake.

We used simulated temperature data for lakes during
1980-2021, driven by meteorological inputs from the North
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American Land Data Assimilation System (NLDAS; Mitchell
et al. 2004). Future temperature projections (2040-2059,
2080-2099) were available for 9133 of the 11,412 (80.03%)
lakes, and lake temperatures were simulated, driven by down-
scaled drivers from six Global Circulation Models (GCMs)
under a high-emissions scenario (RCP8.5; Notaro et al. 2015,
and described in Winslow et al. 2017). To minimize potential
bias in water temperatures driven by different meteorological
driver datasets between contemporary and future time periods,
we used historic projections included with each GCM to calcu-
late lake-specific projected differences in each temperature
metric between historical (1980-2000) and projected future
periods (2040-2059, 2080-2099) for each lake. These lake-
specific differences were then added to contemporary
(NLDAS) temperature metrics for each lake (1980-2021). This
approach allowed us to use the most complete dataset for esti-
mating contemporary thermal regimes while also projecting
future changes in temperatures provided by the GCMs.

Defining and calculating thermal metrics

Using mean daily water temperatures, both surface and
depth-integrated, for each lake, we derived thermal metrics
representing various facets of lake thermal regimes. Sub-zero
predicted water temperatures were set to zero, assuming ice
formation occurs when air temperatures drop below freezing,
rendering surface temperatures relatively stable (e.g., Crisp and
Howson 1982). We summarized daily temperature data across
annual periods (e.g., monthly, seasonal) to capture diverse ther-
mal properties. For example, average July water temperatures
for 1980-2021 illustrate the thermal heterogeneity across lakes
in the study area (Supporting Information Figs. S2, S3). In total,
we computed 34 thermal metrics that capture six aspects of
annual thermal regimes: magnitude, variability, frequency,
timing, duration, and rate of change (Supporting Information
Table S1). We calculated most metrics (31 out of 34) using sur-
face water temperatures (0.0 m depth) to align with common
in situ temperature observations. We extracted three metrics
across entire depth profiles from Winslow et al. (2015) to
describe vertical temperature variations (Supporting Informa-
tion Table S1). Thermal metrics were calculated annually, and
we then calculated mean values for each period (contemporary,
1980-2021; mid-century, 2040-2059; and late century, 2080-
2099). Subsequent analyses use both daily temperatures and
annual temperature metrics as inputs.

Identifying contemporary patterns in temperate lake
thermal regimes
Principal component analysis

We used principal component analysis (PCA) to explore
relationships among metrics for contemporary thermal
regimes in temperate lakes, reducing the dimensionality of
non-normal, multi-scalar data into n interpretable axes that
reveal underlying patterns (Mackiewicz and Ratajczak 1993).
To prepare data for the PCA, we checked for multicollinearity
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among thermal metrics using the variation inflation factor
(VIF) using the “vif” function from the “car” tools package
(Fox et al. 2007) in Program R (version 4.3.2; R Development
Core Team 2024) and removed highly correlated (VIF < 5.0)
and ecologically similar metrics (nine removed; Supporting
Information Table S1). Our input matrix included 11,412 lakes
as rows and the remaining 25 thermal metrics as columns.
The PCA produced principal components (PCs), with each axis
representing linear combinations of the data weighted by
eigenvector coefficients (Mackiewicz and Ratajczak 1993). The
first PC captured the highest variance in the dataset, with sub-
sequent PCs capturing decreasing variance while remaining
orthogonal to prior PCs. We deemed PC axes significant if
they explained over 10.0% of variation and had eigenvalues
> 1.0. We ran the PCA using the “prcomp” function from the
“stats” tools package and assessed significant correlations
between lake-specific characteristics and PC axes using
Pearson’s r (via “rcorr” function in the “Hmisc” package;
Harrell Jr and Harrell Jr 2019).

To identify groups of lakes with similar thermal regimes
during 1980-2021, we applied hierarchical cluster analysis on
the PCA scores, using Ward’s linkage method based on Euclid-
ean distances. We evaluated cluster stability with the “Elbow
Method,” plotting within-cluster sum of squares (WSS) against
cluster numbers to identify distinct clusters. We then mapped
these clusters to the 11,412 Midwestern lakes, visualizing
regions with shared thermal characteristics across the Mid-
west. We used the “hclust” function from the “cluster” tools
package to perform the analysis (Maechler et al. 2013). Using
the first two PCs, we constructed a convex hull around each
identified cluster to delineate multivariate boundaries with the
“chull” function from the “geometry” package (Grasman and
Gramacy 2010).

T-mode principal component analysis

For each unique cluster, we performed a T-mode PCA anal-
ysis (Richman 1986) to examine annual spatial phases in
water temperatures that may emerge at a landscape scale. A
T-mode PCA analyzes variations across time (e.g., daily tem-
peratures) rather than specific metrics, simplifying continuous
time-series observations. A spatial phase herein represents
how the spatial distribution of lake temperatures shifts tempo-
rally across lakes and, thus, the landscape, reflecting different
spatial patterns at different times of the year. The input data
matrix comprised mean daily water temperatures with col-
umns for each of the 366 d (starting January 1) in a year and
rows for the temperate lakes in each cluster. The number of
PC axes explaining significant variation (> 10.0%) reflects dis-
tinct spatial phases in lake temperature patterns, with crossing
PC vectors indicating phase transitions (Gallacher et al. 2017).
One or more significant PCs suggest shifts in spatial patterns
over time, while a single dominant PC implies stable spatial
temperature patterns across lakes throughout the year. Eigen-
vector loadings for each PC axis, thus, capture temporal signals
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in dominant spatial temperature patterns. For instance, similar-
magnitude loadings with the same sign indicate an average spa-
tial pattern, such as a consistent latitudinal temperature gradi-
ent, while variable or sign-changing loadings suggest seasonal
spatial shifts (e.g., strong summer gradients but minimal winter
variation). Multiple PCs that do not cross imply distinct aspects
of spatial temperature variability among periods, with certain
lakes differently contributing throughout the year. To visualize
temporal shifts in spatial phases, we plotted eigenvector load-
ings from dominant PCs for each day and mapped select mean
daily water temperatures during these phases across the Mid-
west (see Supporting Information). This analysis provides
insight into distinct, time-varying spatial patterns of lake ther-
mal regimes within each cluster across the region.

S-mode principal component analysis

We conducted an S-mode PCA (Richman 1986) to evaluate
temporal covariance in water temperature regimes within each
lake cluster. The S-mode PCA eigenvector loadings reveal lakes
with similar temporal patterns in water temperature, adjusted
for spatiotemporal correlations. This analysis enables us to
examine lake-specific characteristics when temporal tempera-
ture patterns do not co-vary. The number of PC axes explaining
significant variation (> 10.0%) indicates distinct periods where
temperature dynamics among lakes either covary or diverge,
with crossing PC vectors marking transitions between these
periods (e.g., Isaak et al. 2018). Typically, the first PC captures
most of the data’s variation due to seasonal water temperature
dynamics (e.g., Supporting Information Fig. S3), but if another
PC explains comparable variation, it implies that temperature
patterns diverge among lakes, which could be driven by local-
ized conditions during transitional periods (e.g., fall or spring).
Further, influential PC axes that do not cross or separate when
plotted suggest that localized conditions do not differentially
impact temperature patterns year-round. For S-mode analysis,
we transposed the T-mode data matrix for each lake cluster,
with lakes as columns and daily mean temperatures as rows,
disaggregating by year to capture hydroclimatic variation. This
matrix comprised over 15,000 daily temperature values (one for
each day from 1980 to 2021) across the lake clusters. We
explored the influence of lake-specific characteristics on tempo-
ral covariance in temperature using a generalized linear model
(“glm” function) on S-mode PC2 scores, with log-transformed
lake characteristics from Supporting Information Table S1 as
continuous, fixed effects and cluster identity as a categorical,
fixed effect, identifying characteristics impacting thermal
regimes across clusters.

Projected climate-driven shifts in temperate lake thermal
regimes

We inferred climate-driven alterations in thermal regimes
using a discriminant analysis of principal components
(DAPC). A DAPC is similar to a PCA but uses a supervised
method to maximize the separation among predefined clusters
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while reducing dimensionality (e.g., Chorak et al. 2019). We
used DAPC to determine which thermal metrics are causing
multivariate changes in regimes across time periods within
each lake cluster we identified. We used a priori groupings of
lakes by previously identified lake clusters and periods (1980-
2021, 2040-2059, and 2080-2099) to initiate the analysis. We
used the “dapc” function from the “adegenet” tools package
(V2.0.1) to perform the analysis (Jombart et al. 2010). To
assess the contribution of individual thermal metrics to these
multivariate shifts, we extracted variable contributions from
the linear discriminant (LD) axes to determine their influence
on cluster differentiation. We compared absolute differences
in LD scores between periods and clusters using the
“MCMCglmm” function from the “MCMCglmm” package
(V.2.35) and default priors (Hadfield 2010), providing robust
estimates of uncertainty around changing LD scores. This pro-
vides a cluster-focused assessment of changing LD scores,
showing how the combination of thermal metrics differs
across time periods and contributes to the broader under-
standing of cluster thermal stability or shifts. We extracted the
mean eigenvalue for the first LD axis for each lake cluster to
visualize the absolute magnitude of shifts in multivariate
space, and thereby thermal regimes, across periods.

Identifying transitional and novel, non-analog temperate
lake thermal regimes

To quantify transitional and novel, non-analog lake ther-
mal regimes, we analyzed thermal regimes across time periods
(1980-2021, 2040-2059, and 2080-2099). Using the first two
PCs from the original analysis, we constructed convex hulls
around the six lake clusters identified and a general convex
hull around all clusters with the “chull” function (Grasman
and Gramacy 2010) to delineate multivariate boundaries
defined by these PCs. We then projected the thermal regime
data from both future periods onto the PC space of current
regimes using the “predict” function. We used standardized
Euclidean Distances (SEDs) to quantify the degree of dissimi-
larity between current (1980-2021) and future (2040-2059
and 2080-2099) lake thermal regimes:

n
SEDk,i = \j Z (bk/i — aii) /Si’-
k=1

Here, n determines the number of thermal regime metrics used
to estimate similarity, and ax; and by; represent the current
and future thermal regimes for the i'™ lake. We standardized
distances using the current thermal regime variability (Szk/,») to
scale all variables, enabling analog or non-analog identifica-
tion across multiple metrics (Ordonez and Williams 2013).

We analyzed projected climate-driven changes in lake ther-
mal regimes by comparing SEDs against a 95™ percentile
threshold, ensuring conservative climate analog determina-
tions (Ordonez and Williams 2013). Using these projections,
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we assessed shifts in lake positions relative to each historical
cluster’s convex hulls and into nearby PC space, reflecting
potential changes in thermal regimes under future climate sce-
narios. Lakes were classified as either shifting cluster identity,
transitional, or non-analogous. Cluster shifting was defined as
lakes moving from their original cluster (based on 1980-2021
temperatures) to another cluster in PC space, indicating shifts
in multivariate thermal properties. We defined transitional
lakes as those occupying PC space in between historical convex
hulls but not outside the hull over the aggregate of clusters.
These transitions inherently involve minor shifts in lake condi-
tions due to changing gradients and covariances rather than
absolute changes in individual variables. Non-analogous lakes,
in contrast, occupied novel PC space outside the bounds of all
historical clusters, indicating unprecedented and novel thermal
regimes. We identified thermal metrics driving non-analogous
changes by calculating each lake’s deviation from the PC mean
and creating a vector of contributions for each variable, where
more extreme values indicate a stronger influence on dominant
PCs. This lake-specific approach differs from the DAPC by
focusing on individual lake transitions within the multivariate
space, offering a detailed perspective on how non-analogous
lakes arise from historical thermal regimes over time.

Results

Identifying contemporary patterns in temperate lake
thermal regimes
Principal component analysis

Water temperatures across Midwestern lakes exhibited sub-
stantial spatial and temporal variability in their physical char-
acteristics and thermal regimes. Most lakes were relatively
small (median ~ 0.28 km?), with moderate maximum depths
(6.71 m), mid-range elevations (374.0 m), and shallow light
extinction values (0.69 m; Supporting Information Fig. S2).
Annual temperature patterns differed widely, with lakes in the
southern portion of our study region (Illinois and Indiana)
experiencing warmer conditions and extended growing seasons
compared to those in northern regions (e.g., Minnesota, Wis-
consin, and Michigan; Supporting Information Figs. S2, S3). For
example, mean annual surface water temperatures across lakes
ranged from 7.34 to 18.91°C, and the frequency of hot days
(no. days with water temperatures > 20.0°C) ranged from 17.19
to 169.60 d (see Supporting Information Table S2 for a complete
summary).

Most variation in lake thermal regimes was driven by sea-
sonal temperature patterns, and influenced by elevation, lati-
tude, and lake depth. Two PCs accounted for 80.23% of
the variation among the 25 lake temperature metrics. The first
PC (PC1) explained 62.17% of the variation (standard
deviation = 3.94) and was negatively associated with the dura-
tion of cold water temperature days and the date of 50% of
the annual degree days, and positively associated with the
average July, spring, and summer water temperatures and
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the growing season length (Fig. 1). First PC scores were posi-
tively correlated with light extinction (Pearson’s r= 0.84,
p=0.02) and negatively correlated with both elevation
(r=-0.94, p=0.002) and latitude (r=-0.98, p =<0.001),
which were both correlated with each other (r=0.93,
p =0.002; Table 1). The second PC (PC2) explained 18.08% of
variation (standard deviation = 2.13) and was positively asso-
ciated with the warming rate of water temperatures, the stan-
dard deviation of summer temperatures, and the date of
stratification, and negatively associated with the average
Julian date at which 50% and 75% of the annual degree days
were accumulated and the mean fall daily water temperatures
(Fig. 1). The PC2 was positively correlated with the maximum
lake depth (r=—-0.96, p = <0.001; Table 1). Subsequent PCs
did not explain significant variation in the temperature met-
rics (< 4.99%). Maps of PC1 and PC2 scores indicated a spatial
patterning in temperature metrics across the Midwest (Fig. 1).
The PC1 shows a consistent spatial patterning where PC scores
decrease with increasing latitude, whereas patterning for PC2
shows a more heterogeneous mix of PC scores scattered
throughout the Midwest given their association with lake-
specific maximum depth (Table 1; Fig. 1).

We identified six distinct clusters of lakes with unique ther-
mal regimes and little overlap in two-dimensional space
(Fig. 2a). Of the 11,412 Midwestern lakes, we classified 4258
(37.3%) as Cluster 1, 1759 (15.4%) as Cluster 2, 2003 (17.6%)
as Cluster 3, 950 (8.3%) as Cluster 4, 2138 (18.7%) as Cluster
5, and 304 (2.7%) as Cluster 6 (Table 2). Convex hulls for each
lake cluster showed little overlap in multivariate space, indi-
cating distinct thermal regimes with minimal similarity
among clusters (Fig. 2a). Spatial patterning of clusters across
the 11,412 Midwestern lakes highlighted several areas where
clusters are geographically restricted (e.g., Cluster 6 in south-
ern regions throughout Illinois and Indiana) and others where
many cluster types are present in a geographically proximal
areas (e.g., Clusters 2, 3, and 4 in central Minnesota; Fig. 2b).
We provide descriptions of thermal characteristics and basic
characterizations of lakes thermal regimes assigned to each
cluster in Table 2. We provided normalized calculations of the
25 included water temperature metrics for each lake cluster in
Supporting Information Fig. S12.

T-mode principal component analysis

Lake clusters exhibited distinct seasonal dynamics in water
temperature spatial phases, with some exhibiting stable tem-
perature dynamics and others undergoing seasonal shifts.
Most clusters exhibit stable temperature patterns across the
Midwest during certain periods of the year, while others, like
Clusters 1 and 2, experience pronounced seasonal spatial
phases (Fig. 3). Results from the T-mode PCA showed that the
first three PCs explained 84.56% of the variation for Cluster
land 78.92% of the variation for Cluster 3. We also found that
the first two axes explained 81.09% of the variation for Clus-
ter 2, 80.18% of the variation for Cluster 4, 80.73% of the
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PC1 score (62.17%)
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Fig. 1. Principal component scores for the first two PC axes mapped to the 11,412 lakes throughout the Midwest during 1980-2021 (a). Eigenvector
loadings of the thermal metrics on the first two principal components in the PCA (b).

Table 1. Pearson’s correlation coefficients and p-values for correlations among lake temperature principal components and characteris-
tics of the 11,412 lakes throughout the Midwestern United States. We calculated statistics from the predicted time series and mean daily

values between 1980 and 2021.

Lake Maximum Light

PC1 PC2 area (km?) depth (m) Elevation (m)  extinction (m) Latitude
PC1 1
PC2 0.027 (0.95) 1
Lake area (km?) —0.006 (0.99) —0.35 (0.49) 1
Maximum depth (m) 0.22 (0.63) —0.96 (<0.001)  0.26 (0.57) 1
Elevation (m) —0.94 (0.006) 0.13 (0.79) —0.13(0.79)  0.04 (0.93) 1
Light extinction (m) 0.84 (0.02) 0.46 (0.30) —~0.19(0.68)  —0.60 (0.16) —0.69 (0.09) 1
Latitude ~0.98 (< 0.001) 0.12 (0.80) ~0.07 (0.89)  0.09 (0.86) 0.93 (0.002) —0.75 (0.052) 1

variation for Cluster 5 and 89.08% of the variation for Cluster
6. Daily eigenvalue loadings indicated when distinct spatial
phases occur for each lake cluster (i.e., phase shift occurs when
PC lines intersect; Fig. 3). For example, a spatial phase transi-
tion in Cluster 2 occurred around 23 February (Julian day 54)

and 12 December (346), suggesting that the average spatial
patterning of water temperatures across sites remained stable
(indicated by largely positive and stable loading values) for the
majority of the year but changed for approximately 2.5 months
(Fig. 3). Principal component vectors did not cross for a
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Cluster V ( a)

PC2 scores (18.08%)

Fig. 2. Ordination plot showing the principal component scores by iden-
tified cluster for the first two PC axes derived from annual water tempera-
ture data measured at 11,412 lakes across the Midwest during 1980-
2021 (a) and principal component scores mapped to lake locations (b).

significant amount of time in Clusters 4 and 6, indicating that
only a minority of lakes within each cluster have strong sea-
sonal temperature changes. See Supporting Information
Figs. S5-S10 for example maps of distinct spatial phases in tem-
perature patterns for each unique lake cluster.

S-mode principal component analysis

Water temperature dynamics across lake clusters were
strongly seasonal, with lake-specific conditions driving devia-
tions from general seasonal trends during transitional periods.
S-mode PC1 explained over 97.50% of the temporal covari-
ance and reflected broad seasonal temperature changes across
lake clusters (Fig. 4). The PC2, on the other hand, captured
localized influences on water temperature temporal covariance
during transitional periods such as spring-to-summer and
summer-to-fall, particularly in clusters with loop structures
(e.g., Clusters 1, 3, and 6; Fig. 4). Late fall to early spring
months exhibited minimal variation and were grouped within
similar multivariate spaces, whereas transitional periods
showed pronounced shifts along PC1, with PC2 variation evi-
dent in specific clusters (Fig. 4). Specifically, loop structures in
Clusters 1, 3, and 6 suggested that localized drivers influence
annual temperature patterns during transitional periods
(Fig. 4; Supporting Information Fig. S11). Reconstructed
annual water temperature dynamics visualize when shifts in
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temperature covariance occurred, typically when PC lines
intersect (Fig. 5). For example, in Clusters 1 and 3 where a
loop structure is present (Fig. 4), PC1 dominated and peaked
mid-summer, likely reflecting seasonal warming; in spring and
fall, PC2 dominance suggested transitional periods driven by
local conditions (Fig. 5). In Cluster 6, PC1’s summer domi-
nance extended into late fall, while PC2 governed from winter
through summer, indicating that only warming patterns are
strongly influenced by localized conditions. In clusters with-
out loop structures, relatively minimal PC line separation
suggested that seasonal air temperature trends primarily drove
water temperature covariance through time. Finally, broader
separation in Clusters 1 and 5 during spring and fall indicated
lower water temperature covariance, showing distinct temper-
ature dynamics during these periods (Figs. 4, 5).

Lake-specific characteristics (maximum depth, surface area,
light extinction, and elevation) influenced PC2 eigenvalue
loadings from the S-mode PCA across lake clusters (Supporting
Information Table S3; Fig. 4). In Clusters 4 and 5, at least one
characteristic was not a significant predictor of PC2 loadings,
potentially strengthening temporal covariance in water tem-
perature dynamics (see Fig. 4). In contrast, all characteristics
influenced PC2 eigenvalue loadings in Clusters 1, 3, and
6 where the loop structure was present (Fig. 4), suggesting that
localized conditions influenced seasonal water temperature
warming and cooling patterns. Lake cluster was the most
influential predictor of PC2 loadings for Clusters 1-5, while
maximum depth (= -0.149) influenced loadings most
prominently for Cluster 6 (see Supporting Information
Table S3 for all g estimates).

Projected climate-driven shifts in temperate lake thermal
regimes

Lake thermal regimes were predicted to change in response
to climate change (all pyenmc < 0.001; Fig. 6). The most infor-
mative discriminant axis, LD1, explained 78.89% of the varia-
tion in thermal regime shifts across time periods, whereas
subsequent axes explained < 15.50%. Increasing LD1 values
represent shifts toward warmer, more variable thermal condi-
tions, primarily driven by three key metrics with high variable
contributions: frequency of hot water temperature days
(DAPC variable contribution = 0.413), duration of hot water
temperature days (0.375), and growing season length (0.081;
Fig. 6b). The rate of thermal regime shifts in multivariate space
differed by cluster, with Clusters 1 and 2 showing more pro-
nounced changes between 1980-2021 and 2040-2059 com-
pared to Clusters 4 and 5, which showed relatively smaller
shifts (Supporting Information Table S4). Between 2040-2059
and 2080-2099, multivariate shifts in regimes were less pro-
nounced for Clusters 4-6 (Supporting Information Table S4).
Lakes from Cluster 6 showed moderate shifts in LD1 values,
particularly for the late-century projection, but overall distri-
butions remained clustered around central LD1 values.
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Table 2. Description of thermal regimes and lake characteristics of the six clusters of temperate lakes across the Midwestern lakes dur-
ing 1980-2021. Normalized values of thermal metrics for each unique lake cluster, which aided cluster descriptions, can be found in
Supporting Information Fig. S12. Relatively stable thermal regimes exhibit consistent temperature patterns within seasons with minimal
variability, while variable regimes experience greater fluctuations within and across seasons.

Lake Proportion of lakes

cluster Descriptors Characterization 1980-2021 2040-2059* 2080-2099*

1 Cool, stable, slowly warming annual thermal regimes with  Cool, stable lakes with 37.31% 14.76% 1.17%
short growing seasons; early timing of stratification; short growing seasons

three distinct spatial phases in water temperatures
focused around late spring and fall; annual temporal
cycles in water temperatures are largely modified by
lake characteristics; lakes located in northern
Minnesota, Wisconsin, and Michigan
2 Cool and quickly warming annual thermal regimes with Cool, variable lakes with 15.41% 57.34% 35.74%
short growing seasons; moderately variable, but short growing seasons
summers are highly variable; late stratifying; two
distinct spatial phases in water temperatures where the
winter is distinct from the rest of the year; lakes located
in the central, upper Midwest
3 Cool, moderately variable, slowly warming annual Cool, balanced lakes with 17.55% 3.07% 2.44%
thermal regimes with short growing seasons and moderate warming
balanced number of cold and hot days; moderate
stratification date; three distinct spatial phases in water
temperatures; water temperatures are covarying across
lakes, but to a lesser degree during spring and fall; lakes
located in central Minnesota, Wisconsin, and Michigan

4 Warm, variable, and quickly warming thermal regimes Warm, variable lakes with 8.32% 15.24% 50.01%
with frequent and quick heat events; variable spring, rapid warming and
summer, and fall water temperatures, late stratifying; stratification

two distinct spatial phases in water temperatures but
some individual lakes contribute to the spatial pattern
differentially during the late spring to late fall; lakes
sparsely located throughout the Midwest, including
southern Minnesota and Wisconsin
5 Moderately cool and variable annual thermal regimes are Moderately cool, variable 18.73% 4.36% 4.38%
warmer later into the year with moderate heat events and lakes with a warm fall
few cold days; two distinct spatial phases in water
temperatures where mid-winter is distinct from the more
stable remainder of the year; water temperatures are
covarying across lakes, but to a lesser degree during spring
and fall; lakes located throughout the central Midwest

6 Very warm and quickly warming thermal regimes with Very warm and variable 2.66% 0.07% 0.12%
frequency heat events with long growing seasons and lakes with long growing
warm winters; water temperatures are highly variable seasons

but stable during the summer; early stratifying; two
distinct spatial phases in water temperatures but some
individual lakes contribute to the spatial pattern
differentially during the late fall to mid-winter; annual
temporal cycles in water temperatures are heavily
modified lake-specific characteristics; lakes located in
the southern Midwest

*Column percentages do not add up to 100% given the presence of lakes classified as either “transitional” or “non-analogous.”
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Fig. 3. T-mode PCA results showing times when dominant spatial phases, or the spatial distribution of lake temperatures across the landscape, occurred
in annual water temperatures during 1980-2021 at lakes across the Midwest separated by cluster. Map colors correspond to cluster identity from Fig. 2.

Identifying transitional and novel, non-analog temperate
lake thermal regimes

Most Midwestern lakes were predicted to shift clusters by
the end of the 21°* century, and a small number were projec-
ted to develop novel, non-analog thermal conditions (Fig. 7;
Supporting Information Fig. S13). By 2040-2059, many lakes
remained in their original clusters (23.3%) but a large propor-
tion shifted into different clusters, specifically into Cluster
2 (57.4% of all lakes; Table 2; Fig. 7; Supporting Information
Fig. S13). Most lakes were classified as Cluster 2 (n = 5236;
57.3%), followed by Clusters 4 (1392; 15.2%) and 1 (1348;
14.8%; Table 2; Fig. 7; Supporting Information Fig. S13).
Cooler lake types, such as Cluster 1, remained predominant in
the northern portions of the Midwest but declined in propor-
tion, whereas southernmost lakes are experiencing pro-
nounced warming and increased variability, exemplified by

the expansion of Cluster 4 (Fig. 7). We note the emergence of
lakes identified as transitional (318; 3.5%; Fig. 7; Supporting
Information Fig. S13), highlighting gradual shifts in thermal
regimes in some lakes that do not match contemporary ther-
mal regimes but are not yet non-analogous. Furthermore, we
predicted a minority of lakes (184; 2.01%) to have novel,
non-analog thermal regimes: 77 lakes were from Cluster
1, 34 from Cluster 3, 32 from Cluster 5, and 11 from Cluster
6 (Fig. 7; Supporting Information Fig. S13). The mean winter
water temperature (non-analog variable contribution
score = —3.42) and maximum weekly average temperature
(— 1.53) negatively contributed to the emergence of non-
analogous thermal regimes, while the warming rate of water
temperature (6.69) positively contributed, suggesting that
extreme, long-term heat events, fast warming rates, and
cooler-than-expected winter temperatures are leading to
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non-analogous lake thermal regimes (Supporting Informa-
tion Table S5).

By 2080-2099, lake thermal regimes are projected to
homogenize across the Midwest, with most lakes shifting
toward warmer and more variable conditions, while novel and
transitional regimes emerge primarily in southern regions
(Fig. 7; Supporting Information Fig. S13). Most lakes transition
into either Clusters 4 (4567; 50.01%) or 2 (3264; 37.7%); in
contrast, other clusters accounted for fewer than 400 lakes
each (Table 2; Fig. 7; Supporting Information Fig. S13).
Remaining cooler lake types, like Cluster 2, are located only in
the northern portions of the Midwest, while the warmer Clus-
ter 4 becomes widespread across the southern and central
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locations within the Midwest (Fig. 7). We predicted fewer tran-
sitional lakes (286; 3.1%) and found that 310 (3.4%) lakes
were predicted to have novel, non-analog thermal regimes,
totaling 63 from Cluster 1, 42 from Cluster 3, 86 from Cluster
5, and 116 from Cluster 6 (Fig. 7; Supporting Information
Fig. S13). Lakes with non-analogous thermal regimes were
generally located in southern locations within Indiana and
Mlinois and in western Michigan (Fig. 7). The 99th percentile
in daily water temperature (— 2.18) and maximum weekly
average temperature (— 1.74) negatively contributed to the
emergence of non-analogous thermal regimes, while
the warming rate of water temperature (7.98) and the mean
July temperature (6.05) positively contributed, suggesting
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Fig. 5. Annual water temperature timing patterns reconstructed from the S-mode principal components using the scaled eigenvector loading values for
PC1 and PC2 averages across years (1980-2021) for lakes across the Midwest separated by cluster.

that summer-specific warming and extreme heat events are
dominant drivers of non-analogous regimes by 2080-2099
(Supporting Information Table S5).

Discussion

Our study highlights spatiotemporal variability of thermal
regimes across Midwestern lakes, primarily influenced by sea-
sonal temperature dynamics. Lakes across the upper Midwest
displayed regionally distinct thermal patterns, where some
regimes adhered to annual variation in temperatures while
others deviated due to the influence of lake-specific or local-
scale characteristics. Process-based simulations driven by cli-
mate change projections indicate that as climate patterns
shift, lake thermal regimes will respond in non-linear ways.
Anticipated changes across cluster types include prolonged
growing seasons and increased frequency and duration of hot
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water temperature days, with some lake clusters predicted to
experience greater regime shifts than others. By the end of the
21% century, most lakes will experience greater temperature
variability and faster warming rates. This homogenization will
result in the loss of lakes characterized by more stable
conditions, which currently dominate the cooler and more
consistent thermal regimes. Furthermore, our analysis identi-
fied a small subset of lakes developing novel, non-analogous
thermal regimes, particularly in the southernmost area of our
study region, where extreme summer warming and heat
events will be more pronounced. Shifting thermal regimes
across Midwestern lakes may disrupt ecological baselines, chal-
lenging the resilience of temperature-sensitive aquatic organ-
isms or processes, particularly cold-water-dependent species
(e.g., Monteith et al. 2007; Hansen et al. 2017, 2022;
Bukaveckas et al. 2024) if turbulent mixing of shallow and
deep waters occurs (Winslow et al. 2015). As thermal
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conditions further diverge from historical norms, the ability to
detect and characterize shifting or novel thermal regimes is
crucial. Integrating these insights into lake conservation
frameworks will help predict and mitigate biodiversity loss
and ecosystem instability across the densely populated, lake-
rich Midwest and lend insights elsewhere.

Our multivariate classification of Midwestern lake thermal
regimes reveals six distinct clusters, primarily defined by long-
term warming rates and summer temperature dynamics, with
secondary influences from extreme temperature events and
seasonal variability. Unlike traditional classifications based on
mixing regimes (e.g., dimictic, monomictic, polymictic; Lewis
Jr 1983), the clusters identified herein reflect broader thermal
patterns that integrate warming rates, seasonal variability, and
temperature extremes. While these clusters do not directly cor-
respond to traditional classifications, they provide a comple-
mentary framework that accounts for both physical and
ecologically relevant responses to warming. Lakes with
warmer summer temperatures and extended growing seasons
are likely to support higher productivity and be warm-water
species dominant, while lakes with shorter growing seasons
and stable winter temperatures may allow for cold-
water-adapted species persistence. For instance, prolonged
growing seasons and summer heat waves can increase the
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frequency of algal blooms and dissolved oxygen fluctuations,
impacting food web stability and habitat availability
(e.g., Monteith et al. 2007; Heathcote et al. 2015; Brehob
et al. 2024; Bukaveckas et al. 2024). Seasonal temperature vari-
ation further influences lake phenology, influencing primary
productivity, food availability, and species composition across
trophic levels (e.g., Yang et al. 2018; Jane et al. 2023). Schmidt
stability—a defining metric in some clusters—further shapes
nutrient cycling and dissolved oxygen levels (Heiskanen
et al. 2015; Farrell et al. 2024; Jane et al. 2023), with implica-
tions for the survival of oxythermal-sensitive species. For
instance, lakes with prolonged stratification often develop
hypoxic conditions below the thermocline, restricting habitat
for cold-water fish like cisco Coregonus artedi, whereas more
frequent mixing can moderate oxygen levels across depths
(Hansen et al. 2022). By classifying Midwestern lakes based on
seasonal and annual thermal variability, our approach builds
on traditional frameworks and provides a foundation for
future conservation efforts targeting climate-sensitive systems.

Temperate lake thermal regimes exhibit substantial hetero-
geneity across the landscape from 1980 to 2021, even across
geographically proximate lakes or those at similar latitudes.
Thermal regime variability across the landscape resulted from
the complex interplay of lake-specific characteristics,
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(c). Colored lines show movement among lake clusters and the line width is proportional to the number of lakes moving between cluster types.

including lake size and morphology (Toffolon et al. 2014;
Kraemer et al. 2015; Calamita et al. 2021), water clarity
(Heiskanen et al. 2015; Rose et al. 2016), and surrounding
land cover (e.g., Schiesari 2006), all of which modulate annual
temperature dynamics. Lake depth and morphology can affect
thermal stratification, distribution, and circulation patterns
(e.g., Verburg et al. 2011; Winslow et al. 2015; Yang
et al. 2018), while water clarity and landscape cover
(e.g., overstory vegetation) regulate solar radiation absorption
and thermal energy transfer (e.g., LeBlanc et al. 1997; Torma
and Wu 2019). Small variations in a lake’s elevation can also
interact with lake morphology and surrounding land cover to
affect micro-climatic patterns, including air temperature,
humidity, and wind patterns, which in turn shape seasonal
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warming and cooling dynamics (e.g., O'Reilly et al. 2015).
Landscape-scale thermal heterogeneity has historically
supported diverse aquatic species with varying thermal toler-
ances across the Midwest by providing thermal refugia that
buffer against extreme distributional shifts. These thermal
“refugia” enhance ecological resilience and sustain complex
community interactions, even as climate change intensifies
(Heino et al. 2009; Comte et al. 2013).

However, our findings indicate that thermal heterogeneity
across Midwestern lakes is at risk of climate-driven homogeni-
zation. While the contemporary landscape supports a broad
diversity of lake types, projected warming will shift most lakes
into just two dominant clusters by the late 21°' century.
Lakes with stable, cooler thermal regimes will become
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increasingly rare, while lakes with warmer, more variable con-
ditions will expand across the Midwest. This shift could
weaken ecological buffering capacity, impacting aquatic biodi-
versity, nutrient cycling, and habitat availability for
temperature-sensitive species (Hansen et al. 2017; Farrell
et al. 2024). Furthermore, a small but notable subset of lakes
(n = 310; 3.4%) will develop novel, non-analog regimes, pre-
dominantly in the southern portions of the Midwest and
western Michigan. These lakes will experience extreme heat
events, rapid warming rates, and altered seasonal dynamics
that diverge from historical precedents, posing potential adap-
tation challenges for aquatic species and ecosystem processes
(e.g., Custer et al. 2024). As lakes lose their historically stable
thermal characteristics, species that rely on predictable sea-
sonal transitions—such as cold-water fish, invertebrates, and
planktonic communities—may face increased physiological
stress and habitat loss (Heino et al. 2009; Comte et al. 2013).
The loss of thermal diversity and the emergence of novel
regimes could accelerate biotic homogenization across the
landscape, favoring more generalist species (e.g., Kirk
et al. 2020). Such changes will require resource managers to
rethink conservation priorities, emphasizing adaptive strate-
gies that maintain both thermal and ecological diversity in
lakes (e.g., riparian restoration, reducing nutrient loading, fish
community augmentation; Magee et al. 2019).

Our results are influenced by several sources of uncertainty
inherent in both classification methods and climate projec-
tions. Corson-Dosch et al. (2023) relied on a high-emissions
scenario (RCP8.5; Notaro et al. 2015) and used six GCMs to
project future water temperatures, establishing an upper
bound on potential warming effects. High-emission scenarios
provide a useful worst-case framework that allows for conser-
vation efforts to prepare for extreme outcomes, and averaging
water temperature projections across GCMs could introduce
variability because each model represents different hypotheses
about climate system dynamics. Furthermore, our reliance on
previously validated GLM simulations ensures that the broad-
scale thermal patterns we describe are robust, even though they
do not explicitly resolve lateral temperature gradients or partial
ice cover but remain effective for broadly capturing vertical
thermal dynamics and seasonal trends in large-scale studies of
lake thermal regimes. Additionally, multivariate analyses, such as
PCA and DAPC, inherently reduce data dimensionality, poten-
tially oversimplifying or overgeneralizing complex ecological pat-
terns by condensing diverse temperature metrics. While
multivariate approaches help to organize complex datasets, they
may obscure ecologically significant details, especially for low-
variance metrics that nonetheless hold biological importance. To
mitigate this, we sought a comprehensive set of scaled tempera-
ture metrics, yet we recognize the limitations of any classification
scheme in capturing thermal complexity. Finally, our study was
spatially constrained to the upper Midwest in the north-central
United States, meaning that “transitional” and “novel” classifica-
tions should be interpreted within this geographic scope.
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In a century increasingly defined by global warming and
climatic shifts, temperate lake thermal regimes are shifting in
ways that pose challenges for ecological management and
adaptation (e.g., Stefan et al. 1998; Kraemer et al. 2015; Rich-
ardson et al. 2017; Martinsen et al. 2019; Jane et al. 2023;
Piccolroaz et al. 2023). Local decision-makers must balance
conservation efforts with the increasing complexity of
climate-induced thermal regime changes (e.g., Feiner
et al. 2022). Leveraging large simulated temperature datasets,
like those from Corson-Dosch et al. (2023), enables ecologists
to examine multiple facets of thermal regime—as well as vari-
ability, magnitude, and timing—across broad landscapes. This
approach provides insights beyond monolithic metrics, cap-
turing complex temperature dynamics across lakes while pre-
serving the granularity necessary for local application.
Furthermore, our landscape-scale analysis identifies lake clus-
ters and key thermal metrics that are directly relevant for con-
servation. For example, regional insights into the expansion
of summer heat waves and prolonged growing seasons inform
strategies for preserving habitat for temperature-sensitive spe-
cies, while resilience indicators help prioritize conservation
resources (e.g., Hansen et al. 2022). Ultimately, integrating
broad-scale thermal data into local management efforts will
enhance climate resilience strategies, equipping practitioners
to address both present conditions and future challenges,
thereby safeguarding freshwater ecosystems under accelerating
climate pressures.
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